3.29 \(\int \frac {x \sin (c+d x)}{(a+b x)^2} \, dx\)

Optimal. Leaf size=124 \[ -\frac {a d \cos \left (c-\frac {a d}{b}\right ) \text {Ci}\left (x d+\frac {a d}{b}\right )}{b^3}+\frac {a d \sin \left (c-\frac {a d}{b}\right ) \text {Si}\left (x d+\frac {a d}{b}\right )}{b^3}+\frac {\sin \left (c-\frac {a d}{b}\right ) \text {Ci}\left (x d+\frac {a d}{b}\right )}{b^2}+\frac {\cos \left (c-\frac {a d}{b}\right ) \text {Si}\left (x d+\frac {a d}{b}\right )}{b^2}+\frac {a \sin (c+d x)}{b^2 (a+b x)} \]

[Out]

-a*d*Ci(a*d/b+d*x)*cos(-c+a*d/b)/b^3+cos(-c+a*d/b)*Si(a*d/b+d*x)/b^2-Ci(a*d/b+d*x)*sin(-c+a*d/b)/b^2-a*d*Si(a*
d/b+d*x)*sin(-c+a*d/b)/b^3+a*sin(d*x+c)/b^2/(b*x+a)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6742, 3297, 3303, 3299, 3302} \[ \frac {\sin \left (c-\frac {a d}{b}\right ) \text {CosIntegral}\left (\frac {a d}{b}+d x\right )}{b^2}-\frac {a d \cos \left (c-\frac {a d}{b}\right ) \text {CosIntegral}\left (\frac {a d}{b}+d x\right )}{b^3}+\frac {a d \sin \left (c-\frac {a d}{b}\right ) \text {Si}\left (x d+\frac {a d}{b}\right )}{b^3}+\frac {\cos \left (c-\frac {a d}{b}\right ) \text {Si}\left (x d+\frac {a d}{b}\right )}{b^2}+\frac {a \sin (c+d x)}{b^2 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sin[c + d*x])/(a + b*x)^2,x]

[Out]

-((a*d*Cos[c - (a*d)/b]*CosIntegral[(a*d)/b + d*x])/b^3) + (CosIntegral[(a*d)/b + d*x]*Sin[c - (a*d)/b])/b^2 +
 (a*Sin[c + d*x])/(b^2*(a + b*x)) + (Cos[c - (a*d)/b]*SinIntegral[(a*d)/b + d*x])/b^2 + (a*d*Sin[c - (a*d)/b]*
SinIntegral[(a*d)/b + d*x])/b^3

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {x \sin (c+d x)}{(a+b x)^2} \, dx &=\int \left (-\frac {a \sin (c+d x)}{b (a+b x)^2}+\frac {\sin (c+d x)}{b (a+b x)}\right ) \, dx\\ &=\frac {\int \frac {\sin (c+d x)}{a+b x} \, dx}{b}-\frac {a \int \frac {\sin (c+d x)}{(a+b x)^2} \, dx}{b}\\ &=\frac {a \sin (c+d x)}{b^2 (a+b x)}-\frac {(a d) \int \frac {\cos (c+d x)}{a+b x} \, dx}{b^2}+\frac {\cos \left (c-\frac {a d}{b}\right ) \int \frac {\sin \left (\frac {a d}{b}+d x\right )}{a+b x} \, dx}{b}+\frac {\sin \left (c-\frac {a d}{b}\right ) \int \frac {\cos \left (\frac {a d}{b}+d x\right )}{a+b x} \, dx}{b}\\ &=\frac {\text {Ci}\left (\frac {a d}{b}+d x\right ) \sin \left (c-\frac {a d}{b}\right )}{b^2}+\frac {a \sin (c+d x)}{b^2 (a+b x)}+\frac {\cos \left (c-\frac {a d}{b}\right ) \text {Si}\left (\frac {a d}{b}+d x\right )}{b^2}-\frac {\left (a d \cos \left (c-\frac {a d}{b}\right )\right ) \int \frac {\cos \left (\frac {a d}{b}+d x\right )}{a+b x} \, dx}{b^2}+\frac {\left (a d \sin \left (c-\frac {a d}{b}\right )\right ) \int \frac {\sin \left (\frac {a d}{b}+d x\right )}{a+b x} \, dx}{b^2}\\ &=-\frac {a d \cos \left (c-\frac {a d}{b}\right ) \text {Ci}\left (\frac {a d}{b}+d x\right )}{b^3}+\frac {\text {Ci}\left (\frac {a d}{b}+d x\right ) \sin \left (c-\frac {a d}{b}\right )}{b^2}+\frac {a \sin (c+d x)}{b^2 (a+b x)}+\frac {\cos \left (c-\frac {a d}{b}\right ) \text {Si}\left (\frac {a d}{b}+d x\right )}{b^2}+\frac {a d \sin \left (c-\frac {a d}{b}\right ) \text {Si}\left (\frac {a d}{b}+d x\right )}{b^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.48, size = 96, normalized size = 0.77 \[ \frac {\text {Ci}\left (d \left (\frac {a}{b}+x\right )\right ) \left (b \sin \left (c-\frac {a d}{b}\right )-a d \cos \left (c-\frac {a d}{b}\right )\right )+\text {Si}\left (d \left (\frac {a}{b}+x\right )\right ) \left (a d \sin \left (c-\frac {a d}{b}\right )+b \cos \left (c-\frac {a d}{b}\right )\right )+\frac {a b \sin (c+d x)}{a+b x}}{b^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sin[c + d*x])/(a + b*x)^2,x]

[Out]

(CosIntegral[d*(a/b + x)]*(-(a*d*Cos[c - (a*d)/b]) + b*Sin[c - (a*d)/b]) + (a*b*Sin[c + d*x])/(a + b*x) + (b*C
os[c - (a*d)/b] + a*d*Sin[c - (a*d)/b])*SinIntegral[d*(a/b + x)])/b^3

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 208, normalized size = 1.68 \[ \frac {2 \, a b \sin \left (d x + c\right ) - {\left ({\left (a b d x + a^{2} d\right )} \operatorname {Ci}\left (\frac {b d x + a d}{b}\right ) + {\left (a b d x + a^{2} d\right )} \operatorname {Ci}\left (-\frac {b d x + a d}{b}\right ) - 2 \, {\left (b^{2} x + a b\right )} \operatorname {Si}\left (\frac {b d x + a d}{b}\right )\right )} \cos \left (-\frac {b c - a d}{b}\right ) - {\left ({\left (b^{2} x + a b\right )} \operatorname {Ci}\left (\frac {b d x + a d}{b}\right ) + {\left (b^{2} x + a b\right )} \operatorname {Ci}\left (-\frac {b d x + a d}{b}\right ) + 2 \, {\left (a b d x + a^{2} d\right )} \operatorname {Si}\left (\frac {b d x + a d}{b}\right )\right )} \sin \left (-\frac {b c - a d}{b}\right )}{2 \, {\left (b^{4} x + a b^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(d*x+c)/(b*x+a)^2,x, algorithm="fricas")

[Out]

1/2*(2*a*b*sin(d*x + c) - ((a*b*d*x + a^2*d)*cos_integral((b*d*x + a*d)/b) + (a*b*d*x + a^2*d)*cos_integral(-(
b*d*x + a*d)/b) - 2*(b^2*x + a*b)*sin_integral((b*d*x + a*d)/b))*cos(-(b*c - a*d)/b) - ((b^2*x + a*b)*cos_inte
gral((b*d*x + a*d)/b) + (b^2*x + a*b)*cos_integral(-(b*d*x + a*d)/b) + 2*(a*b*d*x + a^2*d)*sin_integral((b*d*x
 + a*d)/b))*sin(-(b*c - a*d)/b))/(b^4*x + a*b^3)

________________________________________________________________________________________

giac [B]  time = 0.81, size = 951, normalized size = 7.67 \[ -\frac {{\left ({\left (b x + a\right )} a {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} d^{2} \cos \left (-\frac {b c - a d}{b}\right ) \operatorname {Ci}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) - a b c d^{2} \cos \left (-\frac {b c - a d}{b}\right ) \operatorname {Ci}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) + a^{2} d^{3} \cos \left (-\frac {b c - a d}{b}\right ) \operatorname {Ci}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) + {\left (b x + a\right )} a {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} d^{2} \sin \left (-\frac {b c - a d}{b}\right ) \operatorname {Si}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) - a b c d^{2} \sin \left (-\frac {b c - a d}{b}\right ) \operatorname {Si}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) + a^{2} d^{3} \sin \left (-\frac {b c - a d}{b}\right ) \operatorname {Si}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) + {\left (b x + a\right )} b {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} d \operatorname {Ci}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) \sin \left (-\frac {b c - a d}{b}\right ) - b^{2} c d \operatorname {Ci}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) \sin \left (-\frac {b c - a d}{b}\right ) + a b d^{2} \operatorname {Ci}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) \sin \left (-\frac {b c - a d}{b}\right ) - {\left (b x + a\right )} b {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} d \cos \left (-\frac {b c - a d}{b}\right ) \operatorname {Si}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) + b^{2} c d \cos \left (-\frac {b c - a d}{b}\right ) \operatorname {Si}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) - a b d^{2} \cos \left (-\frac {b c - a d}{b}\right ) \operatorname {Si}\left (\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b c + a d}{b}\right ) + a b d^{2} \sin \left (-\frac {{\left (b x + a\right )} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )}}{b}\right )\right )} b}{{\left ({\left (b x + a\right )} b^{4} {\left (\frac {b c}{b x + a} - \frac {a d}{b x + a} + d\right )} - b^{5} c + a b^{4} d\right )} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(d*x+c)/(b*x+a)^2,x, algorithm="giac")

[Out]

-((b*x + a)*a*(b*c/(b*x + a) - a*d/(b*x + a) + d)*d^2*cos(-(b*c - a*d)/b)*cos_integral(((b*x + a)*(b*c/(b*x +
a) - a*d/(b*x + a) + d) - b*c + a*d)/b) - a*b*c*d^2*cos(-(b*c - a*d)/b)*cos_integral(((b*x + a)*(b*c/(b*x + a)
 - a*d/(b*x + a) + d) - b*c + a*d)/b) + a^2*d^3*cos(-(b*c - a*d)/b)*cos_integral(((b*x + a)*(b*c/(b*x + a) - a
*d/(b*x + a) + d) - b*c + a*d)/b) + (b*x + a)*a*(b*c/(b*x + a) - a*d/(b*x + a) + d)*d^2*sin(-(b*c - a*d)/b)*si
n_integral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a) + d) - b*c + a*d)/b) - a*b*c*d^2*sin(-(b*c - a*d)/b)*sin_
integral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a) + d) - b*c + a*d)/b) + a^2*d^3*sin(-(b*c - a*d)/b)*sin_inte
gral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a) + d) - b*c + a*d)/b) + (b*x + a)*b*(b*c/(b*x + a) - a*d/(b*x +
a) + d)*d*cos_integral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a) + d) - b*c + a*d)/b)*sin(-(b*c - a*d)/b) - b^
2*c*d*cos_integral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a) + d) - b*c + a*d)/b)*sin(-(b*c - a*d)/b) + a*b*d^
2*cos_integral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a) + d) - b*c + a*d)/b)*sin(-(b*c - a*d)/b) - (b*x + a)*
b*(b*c/(b*x + a) - a*d/(b*x + a) + d)*d*cos(-(b*c - a*d)/b)*sin_integral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x
+ a) + d) - b*c + a*d)/b) + b^2*c*d*cos(-(b*c - a*d)/b)*sin_integral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a)
 + d) - b*c + a*d)/b) - a*b*d^2*cos(-(b*c - a*d)/b)*sin_integral(((b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a) + d
) - b*c + a*d)/b) + a*b*d^2*sin(-(b*x + a)*(b*c/(b*x + a) - a*d/(b*x + a) + d)/b))*b/(((b*x + a)*b^4*(b*c/(b*x
 + a) - a*d/(b*x + a) + d) - b^5*c + a*b^4*d)*d)

________________________________________________________________________________________

maple [B]  time = 0.03, size = 315, normalized size = 2.54 \[ \frac {\frac {d^{2} \left (\frac {\Si \left (d x +c +\frac {d a -c b}{b}\right ) \cos \left (\frac {d a -c b}{b}\right )}{b}-\frac {\Ci \left (d x +c +\frac {d a -c b}{b}\right ) \sin \left (\frac {d a -c b}{b}\right )}{b}\right )}{b}-\frac {d^{2} \left (d a -c b \right ) \left (-\frac {\sin \left (d x +c \right )}{\left (\left (d x +c \right ) b +d a -c b \right ) b}+\frac {\frac {\Si \left (d x +c +\frac {d a -c b}{b}\right ) \sin \left (\frac {d a -c b}{b}\right )}{b}+\frac {\Ci \left (d x +c +\frac {d a -c b}{b}\right ) \cos \left (\frac {d a -c b}{b}\right )}{b}}{b}\right )}{b}-d^{2} c \left (-\frac {\sin \left (d x +c \right )}{\left (\left (d x +c \right ) b +d a -c b \right ) b}+\frac {\frac {\Si \left (d x +c +\frac {d a -c b}{b}\right ) \sin \left (\frac {d a -c b}{b}\right )}{b}+\frac {\Ci \left (d x +c +\frac {d a -c b}{b}\right ) \cos \left (\frac {d a -c b}{b}\right )}{b}}{b}\right )}{d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*sin(d*x+c)/(b*x+a)^2,x)

[Out]

1/d^2*(d^2/b*(Si(d*x+c+(a*d-b*c)/b)*cos((a*d-b*c)/b)/b-Ci(d*x+c+(a*d-b*c)/b)*sin((a*d-b*c)/b)/b)-d^2*(a*d-b*c)
/b*(-sin(d*x+c)/((d*x+c)*b+d*a-c*b)/b+(Si(d*x+c+(a*d-b*c)/b)*sin((a*d-b*c)/b)/b+Ci(d*x+c+(a*d-b*c)/b)*cos((a*d
-b*c)/b)/b)/b)-d^2*c*(-sin(d*x+c)/((d*x+c)*b+d*a-c*b)/b+(Si(d*x+c+(a*d-b*c)/b)*sin((a*d-b*c)/b)/b+Ci(d*x+c+(a*
d-b*c)/b)*cos((a*d-b*c)/b)/b)/b))

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(d*x+c)/(b*x+a)^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,\sin \left (c+d\,x\right )}{{\left (a+b\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*sin(c + d*x))/(a + b*x)^2,x)

[Out]

int((x*sin(c + d*x))/(a + b*x)^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \sin {\left (c + d x \right )}}{\left (a + b x\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(d*x+c)/(b*x+a)**2,x)

[Out]

Integral(x*sin(c + d*x)/(a + b*x)**2, x)

________________________________________________________________________________________